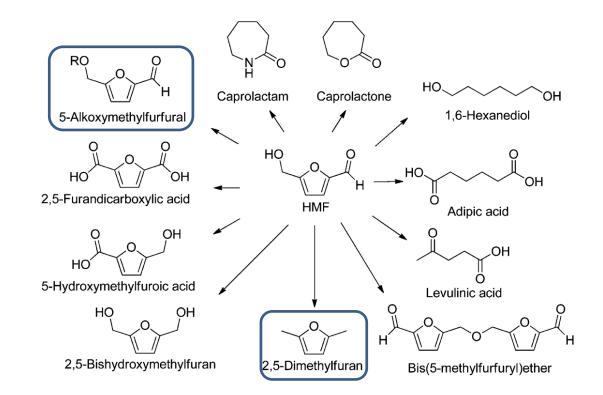


WP4 Progress 29-6-2016

www.macrofuels.eu

WP4



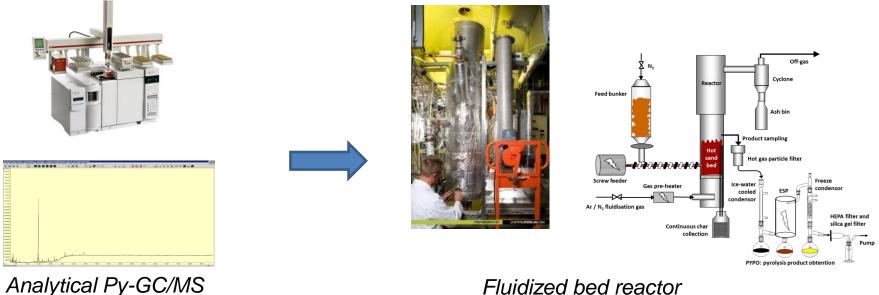
- Partners: ECN, AVT
- 41 PM, Month 1-48.
- Goals:
 - Developing thermochemical conversion routes of seaweed fractions and isolated sugars to furanbased fuels.
 - Upscaling to kg scale and production of fuel for engine tests.

Why furans?

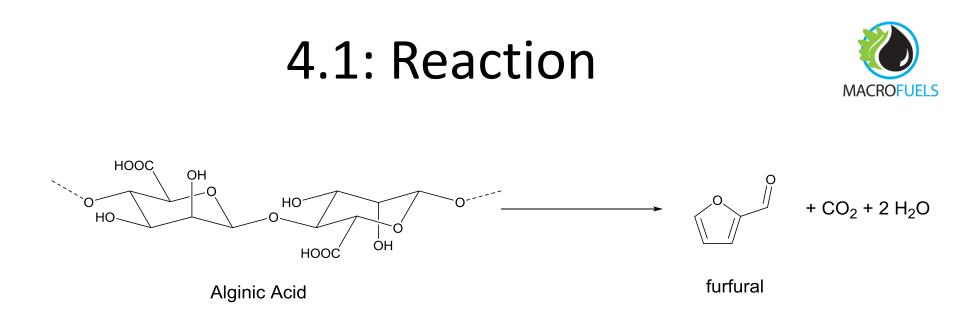
Approach

- Research on furan-based fuels production from
 - 1. Alginate (uronic acids, brown seaweeds) \rightarrow furfural
 - 2. Xylose (red & green seaweeds) \rightarrow furfural
 - 3. Laminarin (glucose, brown seaweeds) → hydroxymethylfurfural (HMF)
 - 4. Rhamnose (green seaweeds) \rightarrow 5-methyl furfural
- Production of sufficient fuel for characterisation (WP5)
- Production of one fuel for engine test (WP5)

Deliverable	Title	Partner(s)	Due date
D4.1	Alginate based furanic fuel	<u>ECN</u>	24
D4.2	Xylose based furanic fuel	<u>AVT</u> , ECN	30
D4.3	Laminarin / glucose based furanic fuel	<u>AVT</u>	30
D4.4	Rhamnose based furanic fuel	<u>ECN</u>	30
D4.5	Fuels sample for WP5 for engine testing	<u>ECN</u> , AVT	36


- Focus AVT: organic solvent-based conversion.
- Focus ECN: aqueous (4.2 and 4.4) and solvent-free (4.1) approaches.

4.1 Alginate to furfural (ECN)



- Starting point: •
 - Literature.
 - Analytical Py-GC/MS work in earlier project on alginic acid showing selective formation of furfural.

Fluidized bed reactor

- $(C_6H_8O_6)n \rightarrow C_5H_4O_2 + CO_2 + 2H_2O$
- Theoretical mass yields: 54.5 wt% furfural, 25% CO_2 and 20.5 wt% H₂O.

4.1 Alginate to furfural

- Benefit:
 - Easier separation of furfural compared to current waterbased processes (diluted streams, azeotrope).
- Viable route?
 - Not based on current pure and expensive alginate sources.
 - However, giant reduction of alginate price expected when large-scale seaweed biorefinery is implemented.
 - Research questions:
 - Can we use impure alginate streams (further cost reduction)?
 - Can we scale-up from mg-scale to kg-scale?

4.1: Alginate to furfural

- Approach:
 - Commercial alginic acid conversion using analytical Py-GC/MS → optimum conditions.
 - Conversion of commercial alginic acid to furfural on kg-scale using bench-scale (fluidized bed) pyrolysis equipment.
 - Production of fuel for initial fuel analysis (WP5).
 - Verification of route using alignic acid isolated from seaweed (WP2).

Laminaria digitata

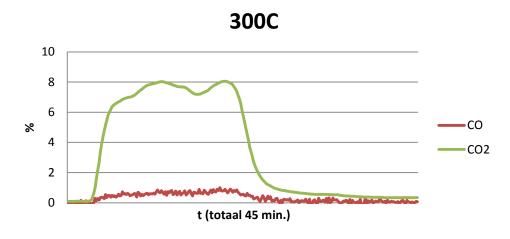
Isolated alginate

4.1 Py-GC/MS screening

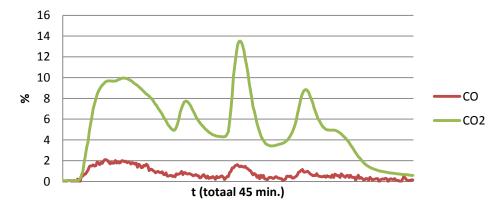
- Literature study:
 - Temperature > 200 °C required.
 - Wide temperature range applicable: 200-700 °C.
 - Max yield @300 °C.
 - > 400 °C increase in side-products.
- Py-GC/MS:
 - Highly selective furfural production from alginic acid
 - Main side products: 2,3-butanedione, acetone & acetic acid in addition to various furans.
 - Not from Na- or Ca-alginate.
 - Temperature screened from 200-550 °C. Results largely in-line with literature:
 - T of at least 250 °C required.
 - No large differences observed in furfural yield > 300 °C.
 - Optimum seems ~350 °C.
 - Quantification of results with internal standard ongoing.

4.1 Fluidized-bed pyrolysis

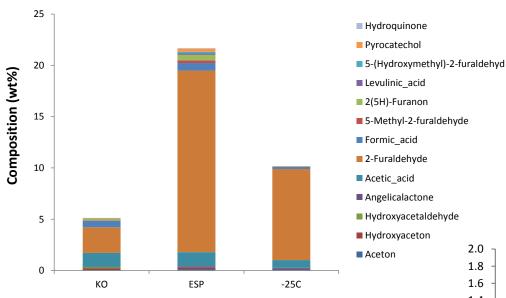
- Three tests performed:
 - ~1 kg/hr fluidized-bed pyrolysis reactor (hot sand, three stage product condensation).
 - 300, 350 and 400 °C.
 - Feed: 200 gr commercially obtained alginic acid (extruded at ECN).
- 350 and 400 °C: experiment had to be stopped due to agglomeration of bed, probably due to melting of alginic acid.
- Test at 300 °C succesful with respect to feeding, but low yield.



Experiments



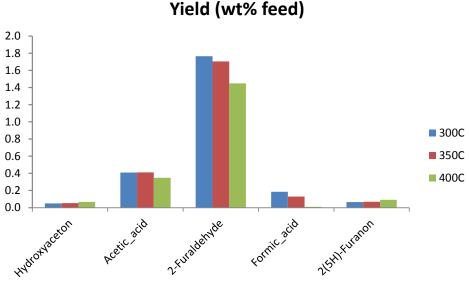
400C: bed agglomeration


400C

www.macrofuels.eu

Yields

Alginic acid pyrolysis @300C



Mass balances:

- Closed (95%).
- Near theoretical yield of CO₂.
- Higher than theoretical yield of H_2O .
- Polymerisation of furfural?
- Future tests: reducing solid residue.

Composition:

- KO and -25: rest is H_2O .
- ESP: 43 wt% organic unknowns (probably oligomers)

4.2: Xylose to furfural (AVT, ECN)

- Approach:
 - Benchmark condition xylose conversion to furfural: literature study and experimental verification.
 - Application of determined conditions for conversion of xylose-rich streams from WP2 to produce furfural-based fuel for WP5.

Palmaria palmata

4.2: Status

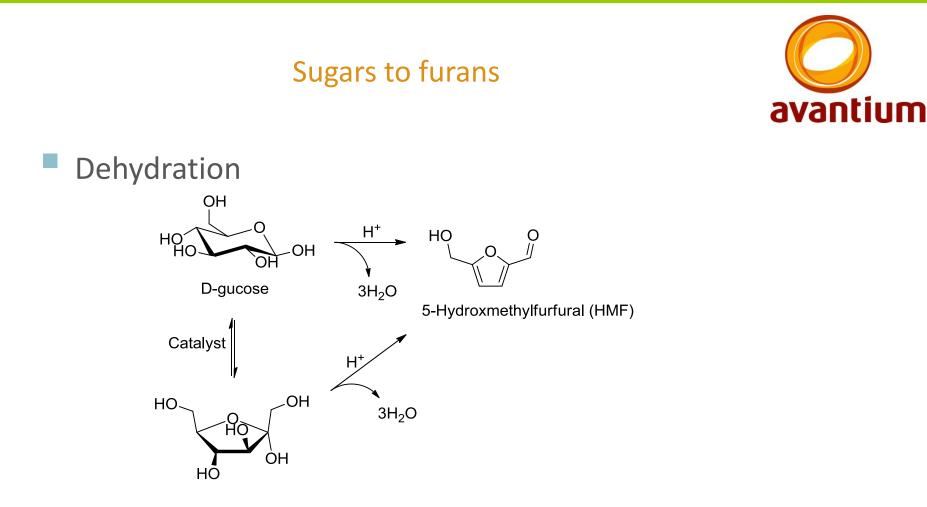
- ECN:
 - No experimental work performed yet.
 - Literature study on aqueous conversion of pentoses to furfural ongoing.
 - Inventory and determination of composition of macroalgae (including pentoses) ongoing in WP2.

Tasks

4.2: Furfural from C5 sugar feeds

No work has been done on this

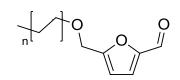
4.3: Glucose to furans (AVT)


- Approach:
 - Starting point: AVT process for production of furanics from starch / glucose.
 - Isomerisation of glucose in laminarin hydrolysates from WP2 to fructose
 - Application of AVT process for conversion to furans
 - Production of a suitable amount of fuel for tests in WP5.

- 4.3: Conversion of laminaran to furans
 - We've performed some experiments in the last few weeks

Yields:

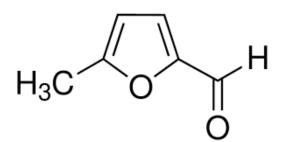
- From glucose: ~5%
- From fructose: 40-90%, depending on the method



Conversion of laminaran to furans

Laminaran is a polymer of glucose

- Requires multi-step process to form HMF
 - Hydrolysis
 - Isomerisation
 - Separation fructose and glucose
 - Dehydration of fructose
 - This is performed in alcohols
 - Forms an alkylated product for fuel



4.4: Rhamnose to 5-methyl furfural

- Starting point: rhamnose from Ulva succesfully converted to 5methyl furfural by ECN in 2015.
- Approach:
 - Yield optimisation of process using commercial rhamnose.
 - Application optimum conditions for rhamnose (-rich streams) from Ulva in WP2.
 - Production of fuel for WP5.

Ulva sp.

4.4: Status

- ECN:
 - No experimental work performed yet.
 - Literature study on aqueous dehydration of rhamnose ongoing.
 - Inventory and determination of rhamnose content
 Ulva ongoing in WP2.

4.5: Fuel batch for engine testing

- Assessment together with WP5 on fuel properties determined in tasks 4.1-4.4.
- Selection of most promising fuel.
- Production of large fuel batch for engine tests in WP5 (10% blend, 20L biofuel).

• No activities yet.

Acknowledgement

This presentation is part of the MacroFuels project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654010

macrofuels@dti.dk

www.macrofuels.eu