

WP3 Biochemical fuel production

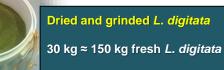
Macrofuels plenary meeting Wageningen Food and Biobased Research Wageningen, The Netherlands 11th January, 2017

Task 3.1 Fermentation of seaweed syrups to ethanol Xiaoru Hou, Dimitar B Karakashev, Randi Neerup, Anne-Belinda Bjerre (DTI)

• Aim: To achieve final ethanol concentrations on seaweed syrups higher than 4%

Seaweed Biomass

Sugar composition of Sacch


	Tempera ture (°C)	Glucose (% DM)	Xylose (% DM)	C			
Less-fouling S.	105	5.9	-	0			
	70	6.7	-	0			and in
	55	7.0	-	0.79	2.21	-	7.63
Heavily-fouling S. latissima	70	2.63	-	0.60	0.98	-	4.48
	air-dried by SAMS	3.55	-	0.52	1.49	-	3.15

Sugar content of Saccharina is too low Use sugar-rich Seaweed hydrolysate from previous project

Seaweed Hydrolysate

Enzymatic hydrolysis 800L reactor with 600L working volume

T= 45°C

Liquid fraction						
Stored at T= -20°C						
Glucose (g/L)	Glucan (g/L)	Mannitol (g/L)				
9.27	5.76	3.32				

This hydrolysate was sent to DLO and to Matis. Used for fermentations at DTI and DLO.

Task 3.1.1 Mesophile yeast fermentation

Strain: Saccharomyces cerevisiae (Quick Yeast, Doves Farm Foods Ltd.)
Medium: the seaweed hydrolysate
Temp: 30°C
Horizontal rotation rate: 120 rpm

Final Ethanol Yield: 73.3 (± 2.1)% theoretical max. **Final Ethanol Conc.:** 3.47(±0.12) g/L

- Fast and efficient fermentation (almost finished after 24 hours)
- No un-fermented monomer glucose was detected
- No obvious lag phase observed (according to CO₂ production monitored by weight loss)
- Glucan and mannitol were not used

Task 3.1.2 Thermophile anaerobacter fermentation.

• Hydrolysate toxicity test

Basic anaerobic (BA) medium containing 2 g xylose/L (Angelidaki and Sanders 2004) pH: 6.5-7.0 Temp: 70°C Fermentation hours: 48-72 h Strain: thermophile *Thermoanaerobacter pentosaceus DTUO1T*, uses both C5, C6 sugars

- 10 % hydrolysate + 90 % BA medium
-25 % hydrolysate +75 % BA medium
- 50 % hydrolysate + 50 % BA medium

Preliminary results:

-Excellent bacterial growth, no inhibition observed

- Waiting for HPLC results of sugars and ethanol

Task 3.1.2 Thermophile anaerobacter fermentation.

- Preliminary fermentation on the seaweed hydrolysate
 - ✓ +/- autoclavation
 - ✓ +/- strict anaerobic conditions (N_2 flush versus N_2 flush + Na_2 S•9H2O)
 - **pH** 6.5
 - **Temp:** 70°C
 - 12 days fermentation (samples collected every 4 days)

Preliminary results:

-Excellent bacterial growth, no inhibition observed

- Waiting for HPLC results of sugars and ethanol

Before fermentation

After fermentation

Task 3.2. Thermophilic anaerobic biorefinery organisms

Bryndís Björnsdóttir, Guðmundur Óli Hreggviðsson, Ólafur H. Friðjónsson, Antoine Moenaert

Engineering of thermophilic strain AK17 for ethanol production and fermentation of laminarin and alginate

Thermoanaerobacterium sp. str. AK17

Robust thermophilic anaerobe

- T_{optimal}: 60 °C
- pH_{optimal}: 6,0

Efficient fermentation capacities

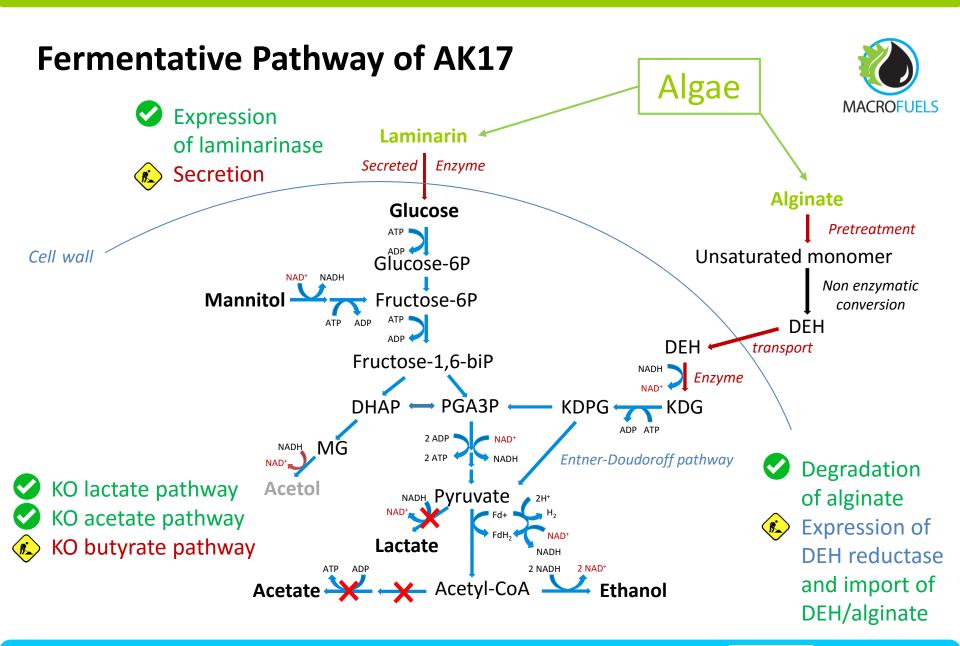
- Good ethanol producer
- Acetate and lactate

Diverse metabolic activities and broad substrate range

- Pentose : xylose, arabinose
- Hexose : glucose, galactose, glucuronic acid and mannitol
- Diose : cellobiose

Susceptible to genetic manipulations

Natural competence for Thermoanaerobacterium genus (Shaw et al, 2010)


Aim: Engineer AK17 for macroalgal carbohydrate utilization

Task 3.3 Efficient fermentation of seaweed to acetone, butanol and ethanol

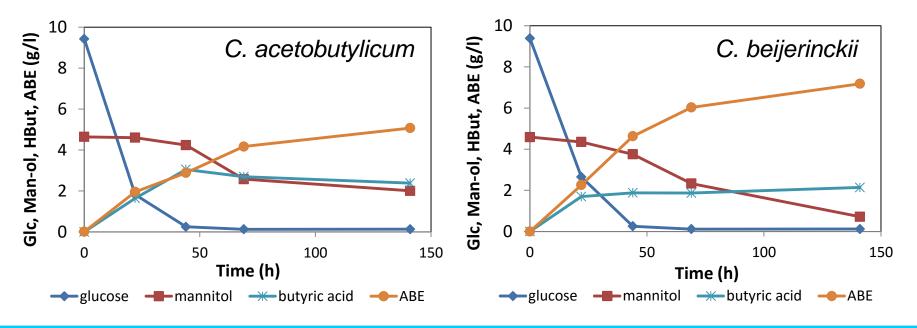
Truus de Vrije, Miriam Budde, Hetty van der Wal, Emil Wolbert, Florent Collas, Ana López Contreras

Seaweed extracts and hydrolysates for fermentation source of seaweed \rightarrow preparation of extract/ hydrolysate

- Brown seaweed
 - Saccharina latissima
 - Laminaria digitata
- Red seaweed
 - Palmaria palmata

SAMS \rightarrow WFBR in other project by DTI

$SAMS \rightarrow ECN$



Clostridium spp. with L. digitata hydrolysate

- Preferred consumption of glucose over mannitol
- More ABE produced by *C. beijerinckii*

- growth with HS-medium, without nutrients

- Growth of C. beijerinckii on P. palmata hydrolysate
 - Preferred consumption of glucose over galactose & xylose

Direct hydrolysis and fermentation of seaweeds and MACROFUELS seaweed fractions

Approach:

- Tools for genome editing in ABE-producers: CRISPR/Cas9
- Insert enzymes for polymer degradation:
 - Model: CelA (*N. patriciarum),* Family GH6, Binding module CBM1. Active on avicel, CMC and lichenan (Icelandic moss). Under development

Results & Targets: ABE production


	Aim	Laminaria digitata	Palmaria palmata
Consumed sugars Sugar type	All sugars	Glc, Man-ol Glucan	Glc, Gal, Xyl oligomeric Glc, Gal Xylan
[Sugars], g/l	40 - 60	25	33
Sugar consumption, %	≥ 90	87	60
[ABE], g/l	15 - 20	7.5	5.7
ABE yield, g/g	0.3 - 0.4	0.36	0.28

Task 3.4 Anaerobic digestion of seaweed SAMS

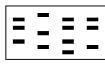
- Microcosms used to test a range of • different conditions
 - Different inoculums (sludge/sediment)
 - Fresh seaweed
 - Pretreatments
 - By products
- Analytical & molecular methods to monitor performance
 - Analytical: methane, total solids, volatile solids, volatile fatty acids
 - Molecular: diversity (gel fingerprint analysis) & quantification (quantitative amplification)
- Scale up best conditions to 10litre
- What do we need to know from you
 - How much sample, when and in what form, composition?

Analytical

VFA's

10 litre vessel

Molecular



 CH_4 , Total & volatile solids,

Extract DNA

Microbial community analysis

Plans for next 6 months

- **DTI:** Two-stage fermentation of C5-C6-rich seaweed hydrolysate:
- Ist stage: C6 conversion to ethanol by mesophilic yeast
- 2nd stage: C5 conversion (effluent from 1st stage after ethanol removal) to ethanol by thermophilic bacterium
- Effect of pH, sugar loading and macronutrients (N, P sources) on thermophilic fermentation

• MATIS: Further work on AK17 strain.

- Fermentation of Laminaria hydrolysate
- Enzyme optimisation
- DLO:
 - Fermentation of *Saccharina* hydrolysate
 - Improve conversion of polymers to ABE
- SAMS: start preparations for AD of seaweeds and fractions

Dissemination

- Manuscripts in preparation by Matis, DLO
- Congresses: CBM 2017 (MATIS), Biotech2017 (DLO)

Next meeting WP3

Skype, in April

