

MacroFuels WP2: Conditioning, pre-treatment and storage

Jelle van Leeuwen, Nicole Engelen, Paulien Harmsen WUR-FBR 10-01-2017

Tasks

- WP 2: Conditioning, pre-treatment and storage
 - Task 2.3: Enzymatic degradation of macro-algal polysaccharides (M3-36)
 - Task 2.4: Fractionation and mild chemical treatment (M3-36)
 - Task 2.5: Purification and concentration of algal sugar syrups (M12-24)
- WP 5: Fuel suitability and by-product application tests
 - Task 5.2: Assessment of the minerals (M20-40)
 - Task 5.3: Assessment of the protein rich fraction (M20-40)

Task 2.4

- Task 2.4: Fractionation and mild chemical treatment (M3-36)
 - 2.4.2: Mineral acid hydrolysis
 - 2.4.3: Sequential mechanical, chemical and enzymatic treatment
 - 2.4.4: Mechanical treatment

Task 2.4.2: Mineral acid hydrolysis

- Provide benchmark to alternative hydrolysis methods
- Cut Saccharina latissima and Palmaria palmata
- Hydrolysis at 100 or 130 °C for 60 minutes
- Low acid and biomass load
 - 2, 4 or 8% (w/dw) H₂SO₄
 - 1:10 biomass:liquid ratio
- High acid and biomass load
 - 10 or 20% (w/dw) HNO₃
 - 1:4 biomass:liquid ratio
- 100 ml scale

Task 2.4: Acid hydrolysis (2)

- Sample analysis
 - HPAEC for sugars
 - Commercial kits (Megazyme) for mannitol, xylose and glucose
 - Kjeldahl for protein analysis
 - Dry weight (105 °C) and ash (550 °C)

Species	Dry weight	Ash	Protein	Carbohydrates	Sulfate	Gap
	% of ww	% of dw	% of dw	% of dw	% of dw	Calculated
S. Latissima	84.5%	43.0%	13.3%	14.2%	3.8%	26%
P. Palmata	68.7%	22.0%	12.3%	58.1%	2.1%	6%

Species	Glucose	Xylose	Galactose	Fucose	Rhamnose	Glycerol	Mannitol
	% of dw	% of dw	% of dw	% of dw	% of dw	% of dw	% of dw
S. Latissima	5%	0%	1%	2%	0%		7%
P. palmata	4%	31%	15%	0%		7%	

Task 2.4: Acid hydrolysis Saccharina (low acid load)

100%

- 1:10 biomass ratio
- 46% mannitol released (5 g/L)
- No glucose detected
- Acid effect on dw (max 55%)

MACROFUELS

Mannitol release

Task 2.4: Acid hydrolysis Saccharina (high acid load)

- 1:4 biomass:liquid
- Up to 80% of dry matter hydrolysed
- Up to 60% mannitol released
- Up to 3% glucose released
- Acid effect on dw, mannitol and glucose

Dry matter release

Task 2.4: Acid hydrolysis Palmaria (low acid load)

- 1:10 biomass ratio
- Up to 80% dw solubilised
- 73% gal, 53% glu, 81% xyl
- 41 g/L reducing sugars

Dry matter release

MACROFUELS

Task 2.4: Acid hydrolysis Palmaria (low acid load)

 Colouration of liquid phase

Task 2.4: Acid hydrolysis

- Buffering capacity in brown seaweed
- Salts? Remove by washing

Exp.	Т (°С)	Acid load	Time	рН	рН
		(HNO3 wt%)	(min)	start	end
B93	25	0	60	7.1	7.8
B94	100	0	и	7.2	6.8
B95	"	2	u	5.3	6.0
B96	"	4	и	4.8	5.6
B97	"	8	u	3.6	3.7
B98	130	0	и	7.2	6.5
B99	"	2	и	5.3	6.0
B100	"	4	u	4.7	5.8
B101	"	8	и	3.6	5.0

Conclusions

- Saccharina resistant to acid hydrolysis
- Reducing sugars from Palmaria easily released

Future work

- Hydrolysis with weak acids (acetic acid, lactic acid, etc)
- Task 2.4.4 Mechanical pre-treatment (grinding, pressing, refining, extrusion)
- Task 2.4.3 Combine acid hydrolysis with washing and pressing to reduce buffering effect, and remove ash/mannitol before hydrolysis

Acknowledgement

This presentation is part of the MacroFuels project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654010

macrofuels@dti.dk

