

WP2 Conditioning, pre-treatment and storage

Wageningen, the Netherlands

10th January, 2017

To follow up the WP2 progress (M6-M12) and discuss common interests and/or possible problems

Biomass status

Biomass for year 2016 has been delivered to all WP2 partners.

e.g. DTI 2016 received:

- Air-dried Saccharina latissima (cultivated & harvested by SAMS in Scotland from 16th Aug, 2016): 2 kg
- Frozen Saccharina latissima (cultivated & harvested by SAMS in Scotland from 16th Aug, 2016): 5 kg
- Frozen Palmaria Palmata (cultivated & harvested by SAMS in Scotland from 16th Aug, 2016): 2 kg
- Frozen Ulva lactuca (cultivated & harvested by SAMS in Scotland from 16th Aug, 2016): 1 kg
- Frozen *Fucus vesiculosus* (Wild type collected by AU in Denmark from 16th Jul, 2016): 3.5 kg
- Frozen Gracilaria vermiculophylla (Wild type collected by AU in Denmark from 5th Jul, 2016): 1.5 kg

Biomass request 2017

Biomass request from WP2_2017		DTI ECN		ECN	IN DI		DLO	DLO		AVT		MATIS		FEXP					
		Biomass	Transport	Delivery	Biomass	Transport	Delivery	Biomass	Transport	Delivery	Biomass	Transport	Delivery	Biomass	Transport	Delivery	Biomass	Transport	Delivery time
		amount	requirement	time	amount	requirement	time	amount	requirement	time	amount	requirement	time	amount	requirement	time	amount	requirement	
		(note down			(note			(note			(note			(note			(note		
		kg-FW or kg-			down kg-			down kg-			down kg-			down kg-			down kg-		
		DW)*			FW or kg	-		FW or kg			FW or kg	-		FW or kg	-		FW or kg	-	
Brown accuracy	Alaria assulanta (CAMC)		Air dried for	Mari	DW)*	TPD	Mari	DW)*	Air dried to > 909/	Direct	DVV)*			DW)*	Air dried for	Mari	DW)*	Emph france	M/hen negeible
Drown seaweed	Alaria escularita (SAWS)	5 DVV + 5 FVV	All-dried for	>iviay		TBD	>iviay		All-dried to >00%	offect	10 DW -6				dried material:	>iviay	5 Kg FW	Fresh frezen	When possible
brown seaweed	Sachanna laussima (SAWS)	10 DVV + 10 P	material [.]	>iviay			>iviay	60 DVV	uw	harvest	the come				Frozen for wet	Piviay	SKGFW	riesii iiozen	when possible
			Frozen for							marroot	type of			101 10	material				
			wet material								seaweed								
											we								
											received								
											earlier in								
											2016,								
											namely								
											Sacharina	1							
											latissimi								
											(SAMS)								
											Comment								
											Trom								
											warujn								
Brown seaweed	Fucus vesiculosus (AU)	5 DW + 5 FW	-	>Mav	50 FW	TBD	>Mav	5 DW						5 DW	-	>Mav	5 ka FW	Fresh frozen	When possible
Red seaweed	Gracilaria vermiculophylla (AU)	2 DW + 2 FW			10 FW	Fresh		2 DW							1	- 1	5 kg FW	Fresh frozen	When possible
Red seaweed	Palmaria palmata (SAMS)	2 DW + 2 FW	Ī		No (lab), n	nay-be for task :	2.5	5 DW	1					10 DW*	1	when	5 kg FW	Fresh frozen	When possible
																possible			
Green seaweed	Ulva lactuca (SAMS)	2 DW + 2 FW			No (lab), n	nay-be for task :	2.5	None						10 DW*		when poss	5 kg FW	Fresh frozen	When possible
					FW	Depends on ou	itcome com	nparison tes	ts.					If possible					
	*FW=Fresh Weight				Minimum														
	DW=Dry Weight																		

- This request has been sent to WP1 on 5th January 2017
- The estimation of biomass amount requirement for year 2018:
 Should be ready by September/October 2017, before WP1 (SAMS) deployment

Update of WP1 status

- SAMS has deployed *Saccharina* and *Alaria* on different SIOEN's substrates (ribbons and nets) in October to December, for the bulk biomass required for year 2017.
- Due to a slow growth rate, *Palmaria* activities have been reduced within a Macrofuels context. SAMS is however, continuing to develop *Palmaria* seeding methods through the activities of a Masters student.
- SAMS has begun lab seeding trials using Ulva zoospores with the view to deploy seeded material later this year.
- Other underway trials: the development of growing systems that will allow easier harvest; optimisation of the time for deploying seeded material and to investigate how coppicing could be used to increase yield per annum.

Task 2.1: Conditioning and storage of macro-algae

- Task 2.1.2 Drying tested in lab and pilot scale using low-cost and large-scale drying methods. The quality and quantity of the stored macro-algae *species* will be monitored in time in terms of available sugars and total biomass.
- Contribution ECN: carbohydrate analysis for seaweeds dried at DTI.
- Plan 2017: milestone 2.1 (M18, Safe storage method for macroalgae). Less than 5% sugar loss.

• Oven drying effects

-

DANISH TECHNOLOGICAL

INSTITUTE

Saccharina latissima (SAMS) harvested on August 2016, frozen transported

Unfreeze & Separate

Heavily fouling part

Less fouling part

• Oven drying effects

105°C

70°C

55°C

3.0

3.2

4.5

2.2

3.4

3.4

4

8

* *	*
*	*
*	7
*	*
**	*

www.macrofuels.eu

between 8~24 hours, missed the point

	Temperature (°C)	Glucose (% DM)	Xylose (% DM)	Galactose (% DM)	Fucose (% DM)	Mannose (% DM)	Mannitol (% DM)
Less-fouling	105 70	5.9 6 7	-	0.78	1.90 2.23	-	6.57 7.05
	55	7.0	-	0.79	2.21	-	7.63
Heavily- fouling S. <i>latissima</i>	70	2.63	-	0.60	0.98	-	4.48
Un- separated <i>S. latissima</i>	air-dried by SAMS	3.55	-	0.52	1.49	-	3.15

Moisture Content Dry Seaweeds

Observations:

- Each seaweed seems to have its own equilibrium moisture content when it is dry.
- Moisture contents ECN are higher than those determined by DTI after drying for task 2.1.

Seaweed Composition

- Composition of MacroFuels seaweed batches 2016 determined with methods presented at Reykjavik meeting.
- Spread within consortium Dec 2nd 2016.
- More detailed information on status method development available upon request.
- Planned activities 2017:
 - Optimization analytical hydrolysis for various seaweeds with NREL protocol (i.e., 2nd step @ 121°C).
 - Scientific publication.

Screw-Pressing

Mapping composition

Bioactivity test

- Keep in -20 °C
- Mapping composition

Screw-Pressing

2

DANISH TECHNOLOGICAL

INSTITUTE

	DM (%)	Ash content (% DM)	Liquid fraction from	Total amount recovered after screw-pressing (% w/w)	DM(%)	Ash content (%)	
Saccharina fresh	a fresh 13.2 37.0 Saccharina		Saccharina	7.7	7.2	56.4	
Solid fraction after screw-pressing	14.6	34.1					
Palmaria fresh	22.9	18.9	Palmaria	19.3	11.5	42.6	
Solid fraction after screw-pressing	29.3	14.0					
<i>Ulva</i> fresh	17.7	31.8	Ulva	39.2	7.5	69.9	
Solid fraction after screw-pressing	26.2	29.2					

	Total recovery (%) ^ª	Total recovery (%) ^b
Saccharina	72.4	76.0
Palmaria	62.7	61.2
Ulva	57.1	57.2

- a. Based on ash content
- b. Based on weight

Screw-Pressing

- ✓ Dewatering to a DM content of 30% by Screw Pressing is possible for *Palmaria* and *Ulva* by Screw Pressing, a bit challenging to *Saccharina*
- ✓ Salts together with water are partly removed by Screw Pressing, which might benefit the following biological process e.g. enzymatic hydrolysis and fermentation

- Plan for next 6 months (M12-M18)
- Mapping the composition of liquid and solid fraction after screw pressing
- Bioactivity test of liquid fraction to explore its potentials as by-products of biofuel production
- Further investigation on the solid fraction (e.g. the suitability as feedstocks for ensiling & enzymatic hydrolysis)

DANISH TECHNOLOGICAL INSTITUTE

Lab-scale ensiling

- □ Investigation of possible easy monitoring for lactic acid production during ensiling process: CO₂ loss lactic acid production correlation
- Mixed culture (homolactic *Pediococcus pentosaceus* +homolactic *Pediococcus acidilatici* + heterolactic *Lactobacillus plantarum*)
 - provided by FEXP (commercial product Pig Stabilizer 600)
 - Total bacterial concentration: 2 x 10¹⁰ bacteria per gram
- Fermentation flasks (200 mL) with yeast locks

Lab-scale ensiling

□ Investigation of possible easy monitoring for lactic acid production during ensiling process: CO₂ loss – lactic acid production correlation

- ✓ Modified deMan-Rogosa Sharpe (MRS) medium (g•L⁻¹): casein peptone (10); yeast extract (5), glucose (20), K₂HPO₄ (2), sodium acetate (5), diamonium citrate (2), MgSO₄ 7H₂O (0.2)
- ✓ 35°C
- ✓ No light
- ✓ pH=6.2-6.5
- ✓ No shaking

✓ Inoculum concentration: 5 % (v/v) liquid culture with OD(570 nm)=2.9

✓ Weight loss (due to the production of CO2) measured by balance

- Lab-scale ensiling
- Investigation of possible easy monitoring for lactic acid production during ensiling process: CO₂ loss – lactic acid production correlation

Weight loss (CO₂ production) from MRS fermentation by the mixed culture is 20 % from the maximum theoretical CO₂ production from heterolactic fermentation. Possible reasons

DANISH TECHNOLOGICAL

• Lactic acid fermentative pathways

Lab-scale ensiling

Protocol establishment for seaweed biomass ensiling

DANISH TECHNOLOGICAL INSTITUTE

DANISH TECHNOLOGICAL

Lab-scale ensiling

Protocol establishment for seaweed biomass ensiling

Waiting for HPLC results for sugars and lactic acids

• Lab-scale ensiling

- ✓ Weight loss (resp. CO₂ production) was correlated with pH drop probably due to lactic acid production
- ✓ lactic acid production is waiting for being proven by HPLC results
- ✓ Natural ensiling was observed
- ✓ Protocols for seaweed ensiling is established

- Plan for next 6 months (M12-M18)
- Alternative ways of addition of lactic acid bacteria (e.g. spraying the seaweed with fresh bacterial culture) for better mass transfer and more efficient fermentation rates
- Ensiling effects by pure heterolactic e.g. Lactobacillus plantarum VS natural bacteria. The possible synergistic effects of natural bacteria and the inoculum will be investigated.
- Effects of substrate concentration (water content)

Contact:

Dimitar Borisov Karakashev: dka@teknologisk.dk Randi Neerup: rne@teknologisk.dk

Task 2.3 Enzymatic hydrolysis of macroalgal polysaccharides (MATIS, DTI, DLO)

Development and test of robust recombinant enzymes of thermophilic and marine origins (MATIS)

- Seaweed hydrolysate (pilot scale, DTI) has been received by MATIS on 15th September
- No success of asking for free enzymes from Novozymes A/S

Task 2.4 Fractionation and mild chemical treatment (ECN, DLO, AVT)

Task 2.5 Purification and concentration of algal sugar syrups (ECN, DLO)

• 1st Year Scientific Report of WP2

Next WP Meeting

• Together with the next project meeting?

• Or: Mobilemeeting?

Acknowledgement

Thank you for your attention!

This presentation is part of the MacroFuels project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654010

macrofuels@dti.dk

