

MacroFuels WP2: Conditioning, pre-treatment and storage

Jelle van Leeuwen, Nicole Engelen, Paulien Harmsen WUR-FBR 10-01-2017

www.macrofuels.eu

Tasks

- WP 2: Conditioning, pre-treatment and storage
 - Task 2.3: Enzymatic degradation of macro-algal polysaccharides (M3-36)
 - Task 2.4: Fractionation and mild chemical treatment (M3-36)
 - Task 2.5: Purification and concentration of algal sugar syrups (M12-24)
- WP 5: Fuel suitability and by-product application tests
 - Task 5.2: Assessment of the minerals (M20-40)
 - Task 5.3: Assessment of the protein rich fraction (M20-40)

Task 2.5

- Task 2.5: Purification and concentration of algal sugar syrups (M12-24)
 - Remove fermentation inhibitors for ABE
 - Salts
 - Other compounds?
 - Concentrate (> 60 g/L)
 - Before/after sugar release
 - Filtration, ion exchange
 - Washing

Task 2.5: Salt removal

- Wash F. vesiculosus with demiwater
 - 1:7 matter:liquid ratio
 - 1, 10 or 30 minutes
 - 25, 55 or 95 °C
 - 2 washing steps

Dry weight

% of ww

59.6%

Glucose

% of dw

6%

Species

Species

F. vesiculosus

F. vesiculosus

Analyse with HPLC, ash and dry weight

Protein

% of dw

Fucose

% of dw

10%

6.6%

Galactose

% of dw

1%

Ash

% of dw

20.4%

Xylose

1%

% of dw

Task 2.5: Washing

- Decolouration
- Temperature/time no influence on ash extraction
- Highest loss in first washing step
- Max 40% of total ash removed

55°C ash liquid phases

95°C ash liquid phases

Task 2.5: Washing

- Overestimation mannitol
- Temperature/time no influence on mannitol extraction
- Highest loss in first washing step

- Biological function
- Intercellular/intracellular

Task 2.5: Washing

 Relative amount of mannitol lost per relative amount of ash removed (%/%)

www.macrofuels.eu

Conclusions and future work

- Mannitol easily released by washing
 - 40% ash removed with short fresh water washing at room temperature
- Mannitol removal through organic solvent extraction (Soxhlet)
- Investigate buffering capacity after washing
- Column technology
 - Salt removal first priority
 - Ion-exchange
 - Combined with simulated moving bed in scale-up
- Filtration options
 - Reverse Osmosis: 10L-scale, ~60% monomeric salts pass; sugars remain
 - Nanofiltration

Acknowledgement

This presentation is part of the MacroFuels project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654010

macrofuels@dti.dk

www.macrofuels.eu